Сила тяжести – формула, определение, обозначение

Большинство задач классической механики рассматриваются в поле тяготения Земли, поэтому определение силы тяжести, действующей на тело в этом поле – необходимость. И поэтому нужно понимать ее природу и уметь рассчитывать ее как на поверхности планеты, так и на высоте от нее.

Сила тяжести – формула, определение, обозначение

О гравитации

Ньютоном было установлено, что любые тела испытывают друг к другу притяжение, и оно тем сильнее, чем ближе тела друг к другу расположены. Часто говорят, что всё началось с истории о яблоке. Отчасти это верно. Цепочка рассуждений привела Ньютона к новому закону, на котором выросла классическая механика неба.

Этот закон установил, что сила притяжения тел друг к другу, или сила тяготения (гравитационная), выражается формулой:

$vec F = gamma {m_1m_2 over r^3} vec r$ – (1),

где m1 и m2 – массы первого и второго тела, r – расстояние между ними, а $gamma$ – некоторая постоянная, которую назвали гравитационной. Причем, согласно третьему закону Ньютона, первое тело действует на второе, и второе на первое. Модуль их сил одинаков, но направлены они против друг друга.

Сила тяжести – формула, определение, обозначение

Рис. 1. Закон всемирного тяготения.

Если записать это, используя второй закон Ньютона для одного из тел, то найдем ускорение, с которым первое тело притягивается ко второму:

$vec a = gamma {m_2 over r^3} vec r$ – (2)

Из формулы (2) видно, что ускорение тела не зависит от его массы. Ему дали название – ускорение свободного падения, и ввели специальное обозначение – g.

Величину $varphi = gamma {m over r}$ – называют потенциалом поля тяжести объекта массой m. Геометрическое место точек, удаленное от объекта на расстояние r – сфера, значение потенциала на любой ее точке одно и тоже. Такую поверхность называют эквипотенциальной. Потенциал, умноженный на массу тела, помещенного в гравитационное поле объекта, называют потенциальной энергией тела в поле объекта.

Сила тяжести – формула, определение, обозначение

Рис. 2. Эквипотенциальная поверхность.

Сила притяжения земли

Если в формулу (2) подставить значения массы Земли и ее радиуса, то получим ускорение свободного падения на Земле. В силу того, что наша планеты приплюснута с боков, то значение g будет наибольшим на полюсах и наименьшим на экваторе. Влияет также и вращение планеты вокруг собственной оси, что создает инерциальные силы. В целом g принимают равным 9,8 м/с2, что является средним значением на поверхности Земли.

Сила тяжести – формула, определение, обозначение

Рис. 3. Форма Земли и значение g.

С подъемом на высоту ускорение свободного падения уменьшается, но незначительно. На 5 км оно все еще приблизительно равно 9,8 м/с2. Поэтому в большинстве задач этим изменением пренебрегают.

Произведение $mg$ называет силой тяжести, действующей на тело массой m в гравитационном поле Земли. Сила тяжести является одной из трех важнейших сил в классической механике.

Задачи

  • Масса Юпитера ${1,9 cdot 10^{27}}$, его радиус – 69911 км, масса космического корабля – 20 тонн. Найти ускорение свободного падения на поверхности Юпитера. Найти силу тяжести, которая действует на космический корабль на высоте 120 км от поверхности Юпитера.

Решение первой задачи

$g_1 = gamma {M over R^2} = {6,67 cdot 10^{-11}}{{1,9 cdot 10^{27}} over 69911^2} = 25,9 м/c$ – ускорение свободного падения на поверхности Юпитера.

$g_2 = gamma {M over (R+h)^2} = {6,67 cdot 10^{-11}}{{1,9 cdot 10^{27}} over 70031^2} = 25,8 м/c$ – ускорение свободного падения на высоте 120 км от поверхности Юпитера.

$F = mg_2 = 516 кН$ – сила тяжести, действующая на космический корабль на высоте 120 км от поверхности Юпитера.

  • Масса космонавта – 70 кг. Масса планеты Земля ${5,97 cdot 10^{24}}$, ее радиус – 6371 км, масса Луны – ${7,35 cdot 10^{22}}$, а ее радиус – 1737 км. Рассчитать силу тяжести, которая действует на космонавта на поверхности Луны и на высоте 500 км от поверхности Земли. Сравнить их величины.

Решение второй задачи

$F_1 = gamma {mM_1 over (R_1+h)^2} = {6,67 cdot 10^{-11}}{{133 cdot 10^{24}} over 6871^2} = 568 Н$ – сила тяжести, действующая на космонавта на высоте 500 км от поверхности Земли.

$F_2 = gamma {mM_2 over (R_2)^2} = {6,67 cdot 10^{-11}}{{515 cdot 10^{22}} over 1737^2} = 15,6 Н$ – сила тяжести, действующая на космонавта на Луне.

$F_1 – F_2 = 552,4 Н$

Что мы узнали?

В ходе урока был разобран закон всемирного тяготения, выведена формула для расчета ускорения свободного падения и введено понятие потенциала гравитационного поля. После чего было рассмотрено ускорение свободного падение на Земле и приведена формула силы тяжести, действующей на тела в гравитационном поле нашей планеты. В завершении урока были разобраны две задачи на пройденную тему.

Беликова Ирина

Учитель физики, информатики и вычислительной техники. Победитель конкурса лучших учителей Российской Федерации в рамках Приоритетного Национального Проекта "Образование".

Оцените автора
Добавить комментарий

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить
Adblock
detector