Период свободных колебаний – формула

Свободные колебания – это колебания системы под действием только внутренних сил. Одним из важнейших параметров колебаний является период колебаний. Рассмотрим это понятие более подробно, его формулу и возможность измерения.

Период свободных колебаний – формула

Свободные колебания

Колебания – это изменение некоторого параметра системы, которое происходит вокруг определенного среднего значения. Колебания могут быть периодическими (колебания маятника) и непериодическими (колебания флага на ветру).

Период свободных колебаний – формула

Рис. 1. Колебания в природе.

Также колебания могут быть вынужденными и свободными. Вынужденные колебания – это колебания под действием внешних сил. Свободные колебания – это колебания под действием внутренних сил.

Флаг на ветру – это пример вынужденных колебаний. Он колеблется исключительно под воздействием ветра. Маятник – пример свободных колебаний. Нитяной маятник колеблется под действием силы тяжести, причина которой – масса самого маятника. Пружинный маятник колеблется под воздействием силы упругости, причина которой – внутренние напряжения деформации пружины.

Условия возникновения свободных колебаний

Для того, чтобы в системе могли возникать свободные колебания, необходимо выполнение следующих условий:

  • в системе должно быть одно положение равновесия;
  • система должна быть выведена из положения равновесия;
  • в системе должна возникать сила, возвращающая систему в положение равновесия;
  • потери энергии в системе должны быть малы.

Для примера можно рассмотреть пружинный маятник. В нем выполняются все эти условия.

Период свободных колебаний – формула

Рис. 2. Пружинный маятник.

Заметим, что сила, которая стремится возвратить маятник в положение равновесия, зависит от отклонения маятника, и тем больше, чем больше это отклонение. А значит, и ускорение, которое получает масса пружинного маятника, будет направлено к положению равновесия, и зависеть от отклонения. Ускорение – это вторая производная перемещения. Единственная функция, вторая производная которой пропорциональна самой функции – это круговая функция (синус или косинус). Колебания, происходящие по закону круговой функции, называются гармоническими. Такими колебаниями являются колебания пружинного маятника. Их формула:

$$x(t)=A cos sqrt{kover m}t$$

где:

  • $x$ – перемещение маятника в момент $t$;
  • $A$ – амплитуда колебаний маятника;
  • $k$ – жесткость пружины маятника;
  • $m$ – масса маятника;

График колебаний:

Период свободных колебаний

Период колебаний – это время, за которое совершается одно колебание. Поскольку колебания маятника описываются круговой функцией, то ее период равен периоду этой функции.

$$T=2pisqrt {mover k}$$

То есть, зная жесткость пружины и массу маятника, можно получить период.

Период колебаний можно измерить и непосредственно. Если посчитать количество колебаний $N$ за время $t$, отношение этих величин также даст период свободных колебаний маятника:

$$T={tover N}$$

Зная период колебаний маятника и его массу, можно определить жесткость пружины.

Период колебаний обычного нитяного маятника можно использовать для нахождения ускорения свободного падения $mathrm{g}$, поскольку формула периода свободных колебаний нитяного маятника аналогична формуле периода колебаний пружинного маятника:

$$T=2pisqrt {lover mathrm{g}}$$

При этом необходимо учесть ограничения формулы – максимальное отклонение нитяного маятника должно быть намного меньше его длины.

Период свободных колебаний – формула

Рис. 3. График колебаний маятника.

Что мы узнали?

Хорошим примером свободных колебаний являются колебания маятника. Период его колебаний описывается специальной формулой, и его можно измерить, найдя отношение времени, за которое происходит несколько колебаний к числу этих колебаний. Найденное значение можно использовать для вычисления жесткости пружины в пружинном маятнике или для вычисления ускорения свободного падения в нитяном.

Беликова Ирина

Учитель физики, информатики и вычислительной техники. Победитель конкурса лучших учителей Российской Федерации в рамках Приоритетного Национального Проекта "Образование".

Оцените автора
Добавить комментарий

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить
Adblock
detector