Баллистическое движение — характеристика, основные формулы и уравнения

Как упадет брошенный предмет, по какой траектории полетит пуля и как рассчитать правильное направление для попадания в цель – всё это объясняется таким понятием как баллистическое движение и изучается соответствующей наукой.

Баллистическое движение — характеристика, основные формулы и уравнения

Наверное каждый при просмотре фильмов о работе экспертов-криминалистов слышал выражение «аэробаллистическая экспертиза», и удивлялся тому, как лихо они определяют местоположение стрелка, и тип, а иногда и модель оружия, из которого был произведен, зачастую, фатальный выстрел.

Понятие баллистики

Определение баллистики звучит следующим образом – наука о движении тел, двигающихся в пространстве. Она изучает в первую очередь принципы движения всевозможных объектов, в частности пуль и снарядов, а также законы природы, влияющие на это движение и способность тела преодолевать возникшие на его пути преграды.

Баллистическое движение — характеристика, основные формулы и уравнения

Физика и математика — вот основы, на которых базируется эта наука, они позволяют при должных знаниях рассчитывать траекторию полёта пули, исходя из воздействия на неё внешних сил, и её проникающую способность.

Сама же наука о законах полета снарядов делится на 4 направления:

  • Исследование движения пули или снаряда в канале ствола орудия изучает направление, которое называется внутренняя баллистика.

  • Поведение снаряда на выходе из канала ствола и в районе дульного среза исследуется промежуточной баллистикой и используется в разработке пламегасящих устройств и глушителей.

  • Вопросы движения снаряда в атмосфере и при воздействии внешних факторов изучаются внешней баллистикой. Основная область её применения – установление поправок на упреждение и влияние скорости ветра на траекторию.

  • Изучение проникающей способности снаряда – цель исследований баллистики под названием преградная (терминальная), которую изучают специалисты по вопросам бронезащиты.

  • История возникновения баллистики

    Испокон веков основным занятием человека являлось уничтожение себе подобных. Сперва для этого использовались булыжники и палки, после чего человечество пришло к тому, что дистанционное оружие дает целый ряд преимуществ его владельцу. 

    Баллистическое движение — характеристика, основные формулы и уравнения

    Так или иначе баллистика изучалась по мере развития человечества, параллельно с развитием механизмов для поражения противника на расстоянии.

    Метательные камни, ножи и дротики, ручные пращи, луки, арбалеты, а впоследствии – баллисты, катапульты, требушеты, толлеоны и, в конце концов, огнестрельное оружие и артиллерийские орудия — все эти средства толкали науку баллистики на протяжении всей своей истории.

    Начало изучения траектории полета снаряда, как науки, было положено Николло Тарталья в 1537 году, начавшим исследование кривой движения этого тела. Продолжил изучение Галилей, сформулировав параболическую теорию.

    Баллистическое движение — характеристика, основные формулы и уравнения

    Развивал данную тему и Ньютон, благодаря изучению законов воздушного сопротивления которого стало возможным доказать невозможность параболической кривой полета снаряда. Его дело продолжил Бенджамин Робинс, основное исследование которого — расчет начальной скорости ядра. 

    Он даже изобрел актуальный по сей день баллистический маятник. Прибор, с помощью которого определяют эффективность взрывчатых веществ, фиксируя при их подрыве угол отклонения маятника.

    Баллистическое движение — характеристика, основные формулы и уравнения

    Далее баллистика развивалась семимильными шагами. Вошедшее в обиход в начале XIX века нарезное оружие, а также использование адаптированных под него снарядов и нового образца патрона, с пулей продолговатой формы, а точнее – необходимость изучения их эффективности и дальнейшей оптимизации, стали серьезным толчком в изучении данной науки, поскольку характеристики нового оружия были весьма высоки, что обуславливало широкую его популярность, и как следствие – высокий спрос.

    Одним из ключевых витков истории баллистики стала разработка численного метода интегрирования дифференциальных уравнений, созданного Карлом Рунге и Мартином Кутта. Определенные элементы их метода позволяли с максимальной точностью вести расчеты траектории тел в пространстве. 

    Появлялись всё новые виды вооружения, конструкторы отчаянно экспериментировали с длиной ствола, внутренними нарезами и наполнением патрона, двигая науку вперед.

    Баллистическая траектория

    Итак, что же в итоге представляет собой баллистическая траектория? Современная энциклопедия гласит: «Это траектория движения свободно брошенного тела под действием только силы тяжести». 

    Баллистическое движение — характеристика, основные формулы и уравнения

    Например, межконтинентальные баллистические ракеты считаются таковыми, поскольку продолжают своё движение к цели после выключения двигателей, как раз-таки по траектории, которую называют баллистической. 

    Здесь же – расчет ведения огня по настильной траектории, проще говоря – плавно опускающейся линии по ходу полета снаряда, и расчет возможности преодолевать возвышения по пути к конечной точке.

    Фактически, таковым является движение любого тела в пространстве, при отсутствии какой-либо дополнительной тяги.

    Основные формулы баллистического движения

    При расчетах и изучении баллистического движения любого тела, стоит обратить внимание на огромное количество факторов – массу, скорость и обтекаемость тела, атмосферные условия и многое-многое другое. Но даже при учете этого, в баллистике есть свои основные формулы, применяемые в исследованиях.

    Баллистическое движение — характеристика, основные формулы и уравнения

    На брошенное под углом к горизонту тело в полете действует по меньшей мере – сила тяжести и сопротивление воздуха. Если исключить из этого силу сопротивления, то, согласно 2-го закону Ньютона, тело движется с ускорением, равным ускорению свободного падения; проекции ускорения на координатные оси равны ах = 0, ау = -g.

    Проекции скорости тела, следовательно, изменяются со временем следующим образом:

    Vx = Vx0 = V0 * cos α;

    Vy = Vy0 – g * t = V0
    * sin α – g * t,

    где V0 — начальная скорость, α – угол бросания.

    Координаты тела, следовательно, изменяются так:

    x = x0 + V0 * t * cos α;

    y = y0 + V0 * t * sin α – 0,5 * g * t2.

    Если за точку отсчета берутся координаты х = у = 0, то:

    x = V0 * t * cos α;

    y = V0 * t * sin α – 0,5 * g * t2.

    Дальнейшие расчеты производятся при введении таких переменных как дальность полета и время, в итоге же получается финальное уравнение траектории движения. Выглядит оно следующим образом: 

    y = x * tg α – g * x2 / 2 * V02 * cos2α.

    Беликова Ирина

    Учитель физики, информатики и вычислительной техники. Победитель конкурса лучших учителей Российской Федерации в рамках Приоритетного Национального Проекта "Образование".

    Оцените автора
    Добавить комментарий

    Вставить формулу как
    Блок
    Строка
    Дополнительные настройки
    Цвет формулы
    Цвет текста
    #333333
    Используйте LaTeX для набора формулы
    Предпросмотр
    \({}\)
    Формула не набрана
    Вставить
    Adblock
    detector