Потенциал электростатического поля точечного заряда – формула, кратко о разности потенциалов (10 класс)

Потенциал электростатического поля точечного заряда

Проявление электрического поля заключается в силовом взаимодействии между зарядами. Электрическое поле имеет ряд характеристик, одной из которых является потенциал. Рассмотрим это понятие, выведем формулу потенциала электростатического поля точечного заряда.

Потенциал электростатического поля точечного заряда – формула, кратко о разности потенциалов (10 класс)

Понятие потенциала

Из курса электродинамики в 10 классе известно, что для определения взаимного влияния электрических зарядов используется понятие напряженности.

Потенциал электростатического поля точечного заряда – формула, кратко о разности потенциалов (10 класс)

Рис. 1. Напряженность электрического поля.

Однако для электротехники такая характеристика поля неудобна. В самом деле, напряженность — это векторная величина, предполагающая движение зарядов в пространстве. Но в электротехнических схемах заряды могут двигаться только по проводникам, направление которых однозначно определено. И имеет значение только движение вдоль проводников. Здесь было бы удобнее рассматривать не векторную, а скалярную характеристику поля.

Для введения такой скалярной характеристики вспомним, что основной задачей электротехники является получение и преобразование энергии. А электрическое поле — потенциально, и работа в нем не зависит от пути, по которому двигался заряд. Важна лишь разница потенциальных энергий в конечных точках траектории.

Все это позволяет ввести специальную энергетическую характеристику электростатического поля — потенциал.

Потенциальная энергия взаимодействия двух зарядов равна:

$$W_{потенц}=k{q_1q_2over r}$$

Из этой формулы следует, что потенциальная энергия электрического поля пропорциональна заряду, и отношение потенциальной энергии к этому заряду постоянно. Это отношение и есть потенциал $varphi$:

$$varphi={W_{потенц}over q}$$

Как и в случае с потенциальной энергией, конкретная величина потенциала не несет большой информации. Практически всегда используется разность потенциалов между двумя точками. Зная ее, можно рассчитать работу, которую совершает заряд при движении от одной точки к другой.

Потенциал поля точечного заряда

Из двух приведенных выше формул легко получить формулу потенциала точечного заряда. Подставив первую во вторую, получим:

$$varphi=k{qover r}$$

Коэффициент $k$ здесь, как и в законе Кулона, зависит от выбранной системы единиц. Для системы СИ ($varepsilon_0$ — электрическая постоянная):

$$k={1over 4pivarepsilon_0}$$

Таким образом, потенциал электростатического поля точечного заряда пропорционален величине заряда и обратно пропорционален расстоянию от него. Если $r=∞$, то $varphi=0$. По сути, потенциал поля точечного заряда равен энергии, которая необходима для удаления единичного пробного заряда в бесконечность.

Потенциал электростатического поля точечного заряда – формула, кратко о разности потенциалов (10 класс)

Рис. 2. Силовые линии точечного заряда.

Потенциал системы точечных зарядов

Поскольку электрическое поле потенциально, и в нём действует принцип суперпозиции, это позволяет легко находить потенциал системы зарядов. Он равен алгебраической сумме элементарных зарядов:

$$varphi_{общ} =varphi_1+varphi_2+…+varphi_n$$

Эта же формула используется в том случае, если заряд распределен по телу неравномерно. Тело разбивается на множество элементарных областей, в каждой из которых заряд можно считать точечным. После этого потенциал всех областей суммируется.

Потенциал электростатического поля точечного заряда – формула, кратко о разности потенциалов (10 класс)

Рис. 3. Потенциал системы зарядов.

Что мы узнали

Электростатический потенциал — это скалярная энергетическая характеристика электростатического поля. Она равна работе, которую надо совершить для того, чтобы удалить пробный единичный заряд из поля в бесконечность. Поскольку электрическое поле потенциально, и в нём работает принцип суперпозиции, потенциал системы точечных зарядов равен сумме потенциалов каждого заряда.

Беликова Ирина

Учитель физики, информатики и вычислительной техники. Победитель конкурса лучших учителей Российской Федерации в рамках Приоритетного Национального Проекта "Образование".

Оцените автора
Добавить комментарий

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить
Adblock
detector