Правило Лопиталя для вычисления пределов, примеры с подробным решением, доказательство

Одной из основных теорем в математическом анализе является правило Лопиталя. Этот закон, предложенный французским учёным, используется для вычисления пределов функций, когда формулы Тейлора применить невозможно. Идейно он достаточно простой, однако его доказательство содержит технические тонкости, на которые следует обратить пристальное внимание.

Правило Лопиталя для вычисления пределов, примеры с подробным решением, доказательство

Общие сведения

Важным понятием в высшей математике является определение бесконечности. Эта неопределённость обозначается символом ∞. Когда её упоминают, то имеют в виду как бесконечно малое число, так и большое. Для записи предела функций используется знак лимита, например, lim 0k (y). В нижней части указывается аргумент со стрелочкой, обозначающей, к чему именно стремится неопределённость. Если предел известный, то он называется конечным, в ином случае — бесконечным.

Когда нельзя установить, является ограничение бесконечным или конечным, то говорят, что предела для рассматриваемой функции не существует. Это возможно, например, когда ограничение тригонометрической функции стремится к бесконечности. Существует несколько способов вычисления пределов: правило Лопиталя, формулы Тейлера, графический метод, подставление неизвестного в функцию.Указанные способы можно применять для нахождения того или иного предела, но для неопределённости вида 0/0 или ∞/∞, а также вычисления отношений бесконечно малых или больших выражений лучше всего использовать закон Лопиталя. Состоит он из двух правил:

Правило Лопиталя для вычисления пределов, примеры с подробным решением, доказательство

  • Для бесконечно малых величин. Когда функции k (y) и d (y) можно дифференцировать в некоторой области точки, исключая саму её, при этом в этой окрестности производная выражения неравна нулю, а пределы этих функций равны нулю, то отношение ограничения этих функций будет равно пределу отношения их производных.
  • Для бесконечно больших значений. Если две функции k (y) и d (y) можно дифференцировать по окрестности взятой точки, но при этом её саму исключить, учитывая, что в рассматриваемой окрестности производная d (y) не равняется нулю, то когда функции в этой точке равны бесконечности, предел отношения этих выражений тождественен отношению их производных.

Другими словами, смысл теоремы Лопиталя заключается в том, что когда нужно найти ограничение для двух функций, отношение которых даёт неопределённость 0/0 или ∞/∞, то можно взять производные этих выражений и найти их отношение. Это действие приведёт к получению искомого ответа. Метод позволяет упростить вычисление сложных показательных степенных функций. Его можно применять и при умножении неопределённостей или их вычитании. Например, 0 * ∞, ∞ — ∞.

Доказательство правила

Лопиталь после знакомства с Бернулли смог систематизировать метод Иоганна и издать в 1696 году книгу «Анализ бесконечно малых», где подробно изложил способы решения задач с неопределённостями. Математически его описание состоит из четырёх пунктов:

  • lim k (y) = lim d (y) = 0 (∞).
  • Графики k (y) и d (y) приближаются к линейному виду.
  • d (y)’ ≠ 0.
  • lim k (y)’ / d (y)’ = lim k (y) / d (y).

Пусть имеется два дифференцируемых выражения, при этом d (y) во всех точках имеет не нулевую производную. При y, стремящемся к a, d стремится к бесконечности. Если предел отношения производных конечного предела или бесконечного равняется числу L, тогда ограничение отношений производных этих функций также будет тождественно этому числу. То есть lim k (y) / d (y) = L, при y → a. Исходя из определения Гейне и Коши, рассматривать можно только монотонные последовательности, которые стремятся к a.

Взяв произвольный ряд, который может расти yn → a, верно утверждать, что в соответствии со следствием теоремы Дарбу и условием d (y)’ ≠ 0, рассматриваемая функция будет строго монотонной. А это означает, что последовательность d (yn) будет такой же. В тоже время из условия lim d (y) = ∞ следует, что d (yn) → ∞. При этом бесконечность может быть как со знаком минус, так и плюс.

Рассмотрим теорему Штольца, а именно отношение: (k (yn+1) — k (yn)) / (d (yn+1) — d (yn)) = k'(Cn) / d'(Cn) = L. Из неё следует, что k (y) / d (y) → L. То есть всегда найдётся такая точка Cn, которая будет принадлежать множеству (Yn+1,Yn). Так как множество стремится к L, то и точка, принадлежащая ему, тоже будет приближаться к L. Поэтому можно утверждать, что и выражение lim k (y) / d (y) → L.

Правило Лопиталя для вычисления пределов, примеры с подробным решением, доказательство

Аналогичным образом первому доказывается и второй случай, когда lim k (y) = lim d (y) = 0. Если предел отношения производных будет L, то ограничения отношений функций будет также равняться этому числу. Из теоремы Дарбу и монотонности получим, что d (Yn) → 0, кроме того k (Yn) → 0. Используя правило Штольце, можно будет утверждать, что k (y) / d (y) → L.

Но на практике часто для решения примеров правило Лопиталя оказывается недостаточным. Это справедливо для заданий, в которых y стремится не к конечному числу, а к бесконечному. Поэтому для таких задач используется следствие из теоремы. Согласно ему, при k → 0 и d → 0, а y → + ∞. Тогда существует предел lim k'(y) / d'(y) = AЄR и предел отношений lim k (y) / d (y) = A. Этот вспомогательный закон очень важен и то же может быть доказан.

Следствие из утверждения

Перед доказательством следствия нужно условиться, что в выражении a будет всегда больше либо равно единице. Это возможно исходя из того, что если a будет меньше единицы, то доказывать нужно будет правило только от единицы до плюс бесконечности. Кроме этого, необходимо ввести замену вида t = 1/y. Она необходима, так как во многом облегчает сведение доказательства к теореме Лопиталя.

Правило Лопиталя для вычисления пределов, примеры с подробным решением, доказательство

Пусть имеется функция K (t), равная k, и D (t), равная d. При этом аргумент последней будет 1/t. Так как по условию правила функции k и d определены на интервале от a до плюс бесконечности, то можно сказать, что функции K и D известны на интервале от нуля до единицы, делённом на a. Это верно из-за того, что если в исходной функции k и d икс подходил достаточно близко к плюс бесконечности, то в силу сделанной ранее замены t будет приближаться к нулю. Если же икс близок к a, то t будет приближаться к значению 1/a.

Так как a больше либо равняется единице, то интервал от нуля до единицы, делённой на a, будет определён корректно. Чтобы воспользоваться теоремой Лопиталя, нужно доказать, что предел lim K'(t) / D'(t) при t, стремящемся к нулю, равняется A. В силу того, что K (t) = k (1/t) и D (t) = d (1/t), можно написать: lim K'(t) / D'(t) = lim k'(1/t)’ / d'(1/t)’ .

Теперь нужно воспользоваться теоремой о производной композиции, условия которой выполнены. Вначале нужно взять производную внутренней функции, а затем внешней. Должно получиться следующее выражение: lim -1/ t 2 k ‘(1/ t) / (-1/ t 2) * d ‘ (1/ t) = lim K ‘(t) / D ‘(t) = lim k ‘(y)/ d (y) = A.

Отсюда можно утверждать, что предел отношений K'(t) / D'(t) будет равняться A. Все условия теоремы Лопиталя выполнены. А это значит, что существует предел отношения функций при t, стремящемся к нулю, равный A. Теперь можно снова применить теорему о пределе композиций и от переменной t перейти обратно к иксу: lim K (t)/D (t) = lim k (y)/(d (y) = A.

Таким образом можно сделать вывод, что требуемое утверждение верно. Использование правила и следствия позволяет выполнить быстрый расчёт неопределённости 0/0 или ∞/∞. При этом другого вида выражение можно свести к этой неопределённости. Это намного упрощает работу, особенно если необходимо логарифмировать или возводить в степень.

Решение примеров

Правило Лопиталя для вычисления пределов, примеры с подробным решением, доказательство

Закрепить правило лучше всего на соответствующих примерах. Существуют типовые задания, чаще всего встречающиеся на контрольных работах. Например, требуется найти предел отношения натурального логарифма от тангенса икс к котангенсу два икс, когда неизвестное стремится к p /4. Помощь в решении окажет правило Лопиталя, которое при сравнении с альтернативными методами окажется на порядок проще.

Для того чтобы понять, какого вида неопределённость в задании, нужно в числитель и знаменатель подставить p/4. Тогда: ln td p /4 = ln 1 = 0 и ctd p /2 = 0. По правилу можно свести нахождение предела функций к вычислению их производных. Искомый предел: A = lim (lntdy ‘) / (ctd 2 y)’ = lim (ctdy * 1/ cos 2 y) / 2 (-1/ sin 2 2 y) = lim (-sin 2 y)(2 * siny * cosy) = (-½) * lim (sin 2 2 y / siny * cosy) = — ½ * 1/½ = -1. Таким образом, решение будет равняться минус единице.

Пусть есть выражение вида: lim y½ (p — 2 arctd √ y) = A. Нужно определить предел при иксе, стремящемся к плюс бесконечности. Чтобы воспользоваться правилом, исходное выражение нужно привести к дробному виду. Для этого выражение можно переписать как lim (p — 2 arctd √ y) / y½. В этом случае имеет место неопределённость 0/0. Поэтому можно рассматривать отношение производной делимого на делитель: A = lim (2 *(1/1+ y) * ½ * y -½ ) / ½ * y -3/2 = lim 2y/(1+y) = 2 lin 1 /(1+ 1/ y) = 2.

Правило Лопиталя для вычисления пределов, примеры с подробным решением, доказательство

Замечательным случаем является неопределённость вида ∞/∞. Например, требуется найти предел lim k (y) при иксе, стремящемся к бесконечности, где функция k (y) = y /ey. По теореме Лопиталя A = lim (y)’ / (ey)’, а это выражение есть не что иное, как lim 1/ey, равняющийся нулю. Теперь можно рассмотреть пример сложнее.

Пусть дано выражение нормальной функции со степенью: lim yy = A, где A = lim k (y). Проэкспоненцируя эту функцию, выражение можно привести к виду: yy = ey *lny. Если найти, к чему стремится показатель экспоненты, то это и будет решением рассматриваемого примера. Можно записать: lim y * lny = lim lny /1/ y = lim (1/ y)/(-1/ y 2 ) = 0. Если предел в показателе экспоненты стремится к нулю, то можно написать, что он будет равняться e0, то есть единице. А это и будет искомый предел: lim k (y) = 1 при иксе, стремящемся к плюс бесконечности.

Закон Лопиталя является хорошим помощником при вычислении особо экзотических пределов. При этом можно попробовать составить выражение, отвечающее условиям правила и из неявного вида функции. Для этого можно использовать раскрытие скобок, дополнительно умножить или разделить функцию на однородный многочлен.

Использование онлайн-калькулятора

Правило Лопиталя для вычисления пределов, примеры с подробным решением, доказательство

Не всегда задания, попадающиеся на практике, довольно легко привести к условию, отвечающему правилу. Да и нередко сама функция настолько умудрённая, что для определения производной понадобится не только проявить внимание и усидчивость, но и затратить довольно много времени. Поэтому в таких случаях есть резон решать задания на онлайн-калькуляторе с подробным решением. Правило Лопиталя отлично поддаётся автоматизированному вычислению.

Такую услугу предлагают более десятка специализированных на математических расчётах сайтов. Доступ к вычислениям предоставляется полностью бесплатно. От пользователя даже не требуется регистрации и указания персональных данных. Работают они на основе алгоритмов, заложенных в программный код используемого онлайн-приложения. Пользователю нужно лишь только подключение к интернету и любой веб-обозреватель.

Все его действия сводятся к введению в предложенную форму условия примера и нажатия кнопки «Рассчитать». После этого программа автоматически вычислит ответ и выведет его на дисплей. При этом в большинстве случаев вместе с ответом приложение отобразит пошаговый расчёт с комментариями. Это позволит потребителю не просто получить готовый ответ, но и разобраться в решении.

Из наиболее популярных сайтов можно выделить следующую пятёрку:

Правило Лопиталя для вычисления пределов, примеры с подробным решением, доказательство

  • Math.semestr.
  • Kontrolnaya-rabota
  • Planetcalc.
  • Math24.
  • Webmath.

Все эти сайты имеют интуитивно понятный интерфейс на русском языке. Кроме предоставления услуги онлайн-калькулятора, на их страницах содержится вся необходимая теория, помогающая понять, как происходит нахождение ответа. А также приведены несколько типовых примеров с подробным решением.

Пользоваться такими сайтами сможет даже пользователь, ничего не понимающий в математическом анализе. Но решая различные примеры, со временем он поймёт суть идеи правила и сможет самостоятельно вычислять пределы функций. При этом такие сайты являются отличным подспорьем как инженерам, проводящим сложные вычисления, так и студентам, проверяющим свои навыки.

Беликова Ирина

Учитель физики, информатики и вычислительной техники. Победитель конкурса лучших учителей Российской Федерации в рамках Приоритетного Национального Проекта "Образование".

Оцените автора
Добавить комментарий

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить
Adblock
detector