Правильное построение графика показательной функции является не такой простой задачей. Рекомендуется выяснить основные ее свойства, а также разобрать применение в жизненных ситуациях. В интернете информация о ней не систематизирована, и нужно выбирать из нескольких источников, а затем проверять. Начинать изучение следует с базовых понятий, после которых переходить к более сложным элементам.
Общие сведения
Функцией называется закон зависимости одной величины от другой. Выражается она при помощи выражений алгебраического, тригонометрического, иррационального и других типов. Существует два типа переменных, которые встречаются в любых функциях: зависимая и независимая. Последняя называется также аргументом.
Основной особенностью показательной функции считается ее вид, поскольку основанием является число, а степенью — аргумент. Последним называется независимая переменная, которая может принимать любые значения, кроме превращающих ее значение в пустое множество или неопределенность. Показательной называется функция вида z (y) = a^y (a > 0), которая зависит от аргумента в виде показателя степени «y».
Сферы использования
Применяется в описании различных законов роста какой-либо величины. В зависимости от показателя, функция может быстро возрастать. Иногда вместо основания «а» может быть указан символ экспоненты, которая стремительно возрастает. Пример показательной функции mc (t) = m0 * (½)^(t/T) используется при подсчете энергии, выделяемой во время деления ядер радиоактивного элемента за время t. Переменные и коэффициенты расшифровываются следующим образом:
Скорость роста функции можно проиллюстрировать на примере шахматной доски с зернами пшеницы. История гласит, что изобретатель шахмат попросил в награду положить на 1 клетку 1 зерно, на вторую — 2, на третью — 2 * 2 = 4 и так далее. На последнюю положили 2 63 штуки злаковых зерен. Следует отметить, что на шахматной доске 64 клетки. Решение простое, но результат вычисляется затруднительно, поскольку следует посчитать значение 1 + 2 + 2 2 + 2 3 + … + 2 63 .
Используя формулу геометрической прогрессии Sn = b1 * [(q^n) — 1] / (q — 1), можно без проблем вычислить значение. Первое значение b1 = 1, знаменатель q = 2 3 / 2 2 = 2 2 / 2 = 2 / 1 = 2. Общее число зерен определяется таким образом: S64 = 1 * [(2 64 ) — 1] / (2 — 1) = (2 64 ) — 1. Ученые подсчитали, что такое количество превышает урожай пшеницы на планете за 2008−2009 год в 1800 раз. Если воспользоваться справочником или компьютером, то S64 = 18446744073709551615 — 1 = 18446744073709551614.
Примеры иллюстрируют применение степенной функции в жизни, поскольку она может описывать явления природы, в которой протекают различные процессы. Например, деление клеток злокачественных опухолей, увеличение количества молекул озона при разрядах молнии и так далее.
Представление функции
Математики рекомендуют ознакомиться на начальных этапах с графиком показательной функции и ее свойствами. Графиком называется ее графическое представление в некоторой системе координат. В качестве последней распространена декартовая прямоугольная с двумя осями (ординат — z и абсцисс — y). Оси можно обозначать любыми литерами. Например, в формуле mc (t) = m0 * (½)^(t/T) рекомендуется использовать в качестве ординаты ось «mc», а абсциссой будет время t.
Необходимо рассмотреть свойства функции, а затем строить ее график. Они различаются между собой, поскольку существует несколько вариантов представления. Для правильного построения и анализа необходимо разобрать все варианты. Это позволит воспользоваться уже готовым материалом и существенно оптимизирует процесс решения задач. Представление функции состоит из свойств и графика.
Основные свойства
Свойствами функции z = a^y называется совокупность некоторых характеристик, присущих только ей. Они нужны не только для построения графика, но и для дифференцирования, анализа и интегрирования. Список свойств и полезных соотношений:
Свойства функции доказываются математическим путем. Они основаны на алгоритмах исследования ее поведения.
Доказательства некоторых утверждений
Соотношения необходимы для решения различных задач, основанных на дифференцировании, интегрировании и упрощении выражений. Можно доказать третье свойство, то есть попытаться найти минимум и максимум. Для нахождения экстремумов следует воспользоваться таким алгоритмом:
Проверка на четность осуществляется по соотношению z (-y) = z (y) таким образом: a^(-y) = 1 / |a^y|. Правая часть тождества не соответствует левой. Значит можно сделать вывод, что z (y) не является четной. Чтобы проверить на нечетность, следует воспользоваться равенством z (-y) = -z (y). Подставив значение «-у», получается следующее: a^(-y) = 1 / |a^y|. Следовательно, функция принадлежит к общему виду, то есть правилам четности и нечетности она не подчиняется.
Точка пересечения с осью ординат рассчитывается таким образом: решается уравнение z = a^y относительно y, принимающего нулевое значение: z = a 0 = 1. Искомая точка имеет координаты (0;1).
Построение графиков
Для построения графиков следует рассмотреть два случая, при которых a > 0 (рис. 1) и 0 < a < 1 (рис. 2). Кроме того, можно для сравнения построить частные примеры со следующими условиями:
Для построения графика существуют свои правила, которых рекомендуют придерживаться математики. Процедура осуществляется в двух режимах: схематическом и точном. В первом случае нужно знать свойства. Таблица зависимостей значения от аргумента не составляется. При точном построении необходимо составить таблицу. В ней необходимо рассмотреть около 5-10 значений независимой переменной. Затем все точки отмечаются на декартовой системе координат и плавно соединяются.
Оформление играет очень важную роль, поскольку не допускаются исправления. Очень важно соблюдать масштаб, и не отмечать каждое значение шкалы делений на оси абсцисс и ординат. Следует учитывать, что графики чертят также в двух режимах: автоматизированном и ручном. В первом случае применяются специализированные программы и веб-приложения (онлайн-калькуляторы). В последнем необходимо чертить карандашом, используя линейку. Этот момент очень важен, поскольку приучает к дисциплине на уроках, а также повышает читабельность материала. Для примера нужно начертить график z = 2^y. Необходимо составить таблицу 1:
z | 0,3 | 0,5 | 1 | 2 | 4 | 8 |
у | -2 | -1 | 0 | 1 | 2 | 3 |
Таблица 1. Зависимость значения от аргумента (z = 2^y).
По таблице нужно построить график, отмечая координаты каждой из точек. После этого нужно плавно их соединить. Должен получиться примерно такой график:
Рисунок 1. График z = 2^y (a > 0 и y > 0).
Если рассмотреть пример, в котором y > 0 и 0 < a < 1, то графическое изображение (рис. 2) будет немного другим:
Рисунок 2. График при 0 < a < 1.
При a < 0 и x > 0 график также существенно изменится, поскольку будет постоянно убывать:
Рисунок 3. Графическая иллюстрация при a < 0 и x > 0.
Когда основание равно 0, тогда функция перестает быть показательной, поскольку не соблюдается условие из определения. На рисунке 4 представлен ее график:
Рисунок 4. Графическое представление при a = 0 и x > 0.
Последний случай — основание равно 1. Функция также не является показательной.
Рисунок 5. График при a = 1 и x > 0.
Кроме того, встречаются задачи не только на построение графика, но и на осуществление операций дифференцирования, нахождения производной и первообразной.
Правила дифференцирования
В некоторых задачах следует найти производную или дифференциал степенной функции. Для осуществления этой операции существует определенный алгоритм, который специалисты рекомендуют рассмотреть на конкретном примере. Условие задачи следующее: найти дифференциал z = 4^(6y). Для его нахождения нужно предпринять такие шаги:
Необходимо отметить, что производная берется из таблицы простейших (элементарных) функций. Когда выражение является сложным, как в примере, то дифференциал ищется по частям. Формула для сложного выражения имеет такой вид: [w(y(z(x)))]’ = [z(x)]’ * [y(z(x))]’ * [w(y(z(x)))]’. Соотношение трудно понять, но на примере все довольно просто. Например, нужно найти производную z = e^(2cos(2x^2 + 1)). Функция состоит из трех элементов: f = 2x^2 + 1, y = 2cos(f) и v = e^y.
Следует воспользоваться формулой и вычислить производную каждого элемента: z’ = [e^(2cos(2x^2 + 1))]’ = 2[2x^2 + 1]’ * [cos(f)]’ * [e^y]’ = 8x * (-sin(2x^2 + 1)) * e^(2cos(2x^2 + 1)). Результат следует оставить в таком виде, поскольку подобных слагаемых нет. Однако математики рекомендуют выносить минус в начало выражения: z’ = -8x * (sin(2x^2 + 1)) * e^(2cos(2x^2 + 1)).
Поиск первообразных
Отдельным классом задач является интегрирование или нахождение первообразных. Для этой цели применяются специальные таблицы интегралов простейших функций. Кроме того, можно воспользоваться и табличными значениями производных. Они позволяют найти искомое первообразное выражение. Интегрирование считается обратной операцией и позволяет найти тождество, из которого была получена производная.
Для нахождения интеграла a^y следует воспользоваться такой формулой: ∫(a^y)dy = ∫(e^(ln(a * y))dy = [1 / ln(a)] * ∫(e^(ln(a * y))d(ln(a * y) = [1 / ln(a)] * (e^(ln(a * y)) + C = [1 / ln(a)] * (a^y) + C. Коэффициент «С» — константа, которая при дифференцировании исчезает. Однако ее необходимо учитывать. Кроме того, необходимо постоянно следить за знаком интеграла и переменной, по которой находится первообразная.
Таким образом, для решения задач со степенной функцией нужно пользоваться свойствами и алгоритмами, поскольку это существенно сэкономит время и избавит от множества ошибок.