Многих людей, хоть как-то изучавших курс высшей математики в учебном заведении, приводит в ужас словосочетание «дифференциальные уравнения».
Согласно строгому научному определению в книгах – так именуются математические выражения, где в состав входят функция, ее производная или параметр.
Имеется достаточно большое количество типов этих равенств, рассмотрим подходы к их решению так, чтобы они были понятны даже для «чайников».
Дифференциальные уравнения первого порядка
Обыкновенное диффуравнение (ДУ) 1-го порядка задается относительно некой функции, имеющей вид у(х):
F(x,y(x),y´(x)) = 0,
здесь, F(x,y,y’) – это функция, задающаяся для трех аргументов (в этом примере для х, у и у’).Таково строгое математическое определение ДУ.
Для примера можно привести следующее уравнение:
xy'(x) — y(x)2 = 0
функция вида F(x,y,p) = xp — y2
Простейшие ДУ первого порядка
Общепринятый механизм нахождения решения таких выражений (чаще всего похожи на y’ = f(x)) – это интегрирование левой и правой части такого уравнения на заданном промежутке Х.
После интегрирования получим такое выражение:
∫ y’dx = ∫ f(x)dx
Воспользовавшись свойствами, которые относятся к интегральным выражениям, упростим выражение до вида:
y = F(x) + N
здесь, F(x) – это первообразная от функции f(x) на заданном интервале Х, а N – случайным образом выбранная константа.
Задача №1
Необходимо определить все возможные варианты решения диффуравнения, имеющего вид
Последовательно рассмотрим решение.
Представленное диффуравнение может иметь смысл только при действительных значениях параметра х. Примем условие, что x ≠ 0, тогда выражение легко преобразовывается в следующее:
Если же, напротив, принять, что х = 0, то выражение приобретет следующий вид, характерный для любых функций y’, удовлетворяющих данному условию:
Можно заключить, что решением при справедливости условия х = 0 будет любая функция у, найденная, когда аргумент равен нулю. Остается только проинтегрировать полученное диффуравнение:
Данное выражение – это решение для приведенного диффуравнения.
ДУ с разделяющимися переменными
Среди дифуров 1-го порядка можно выделить такие, где все переменные х и у можно преобразовать так, что они окажутся по разные стороны от знака равенства.
Соответственно уравнения, где путем преобразований это возможно сделать, называются диффуравнениями с разделяющимися переменными.
Их общий вид следующий:
После проведения нескольких преобразований, это выражение может быть сведено к следующему виду:
При составлении преобразований необходимо внимательно разделять переменные, не допуская, чтобы функции обращались в ноль, иначе возможна потеря некоторых значений.
Задача №2
Рассмотрим обыкновенный пример. Необходимо определить все возможные решения диффуравнения y’ = y(x2 + ex)
Как решать? В первую очередь проводим разделение переменных в разные части уравнения:
Данные преобразования справедливы, если у ≠ 0.
Если рассмотреть вариант решения при нулевом показателе функции, то можно заметить ,что
Это означает, что y = 0 – одно из возможных решений задачи.
Рассмотрим другие варианты решений, для чего произведем интегрирование диффуравнения:
Финальная часть преобразований будет вторым решением диффуравнения. Останется только потенциировать это выражение, чтобы привести его к более явному виду:
Правильными решениями, в результате преобразований, будут:
Кроме того, можно воспользоваться онлайн системой для нахождения ответа. Подробные объяснения даны в решебниках Филиппова и Понтрягина.
Линейные неоднородные ДУ первого порядка
Линейные неоднородные уравнения – это такие выражения, которые можно записать в формате y’ + b(x)y = f(x), при этом функции b(x) и f(x) – непрерывные.
Основной принцип при нахождении решения сводится к следующим шагам:
Первым делом для уравнения необходимо произвести поиск решения, которое бы соответствовало линейному однородному диффуравнению.
Затем необходимо варьировать произвольной постоянной, производя ее замену на функцию.
На финальном этапе функция подставляется в первоначальное уравнение, откуда, решая ДУ, получается ответ.
Задача №3
Рассмотрим применение методики решения на примере.
Необходимо найти решение дифференциального уравнения вида
Решение заключается в следующем. Первоначально примем, что y = m∗n, следовательно, получается:
На следующем этапе нужно определить, что такое m (оно обязательно не должно быть равным нулю), при котором все выражение внутри скобок будет равно нулю.
Получаем дополнительное дифференциальное уравнение:
Теперь необходимо принять одно из частных решений n = x2 + 1, которое соответствует равенству С2 — С1=0.
Выполняем оставшиеся преобразования:
Вполне очевидно, что ответом на условие задачи будет функция:
Задача Коши для ДУ
При рассмотрении решения практически любого диффуравнения, имеющего вид F(m,n,n’) = 0, становится очевидно, что это бесконечно большое количество решений (это следствие самого возникновения диффуравнения).
На данном этапе математики сталкиваются с вопросом о выборе конкретного решения и способе его выделения из множества.Иными словами, если представить решения в виде бесконечного множества интегральных кривых, то необходимо найти среди них нужную.
Чтобы это сделать, необходимо рассмотреть плоскость Xoy, где должна быть задана некая точка D0, имеющая координаты (x0, y0) – именно через них и должна пройти интегральная кривая, чтобы стать искомым ответом.
Когда мы с самого начала задаем точку D0(x0, y0) – это означает, задание начального условия y(x0) = y0. Диффуравнение, для которого определено начальное условие в представленном формате, называется уравнением с заданной задачей Коши.
Задача №4
Рассмотрим примеры с объяснениями. Необходимо определить решения задачи Коши вида:
Ход решения строится в три этапа. На первом этапе решаем диффуравнение y’ = xy2 стандартным методом. Его решение приводить не будем, приведем только ответ:
Производим подстановку начального значения (х = 0, у = 1) в решение и находим значение С:
Производим подстановку полученного значения в ответ диффуравнения и получаем одно из частных решений:
Полученная функция – ответ на задачу Коши в этом примере.
Дифференциальные уравнения Бернулли
ДУ Бернулли обычно представлено в следующем виде:
y’ + b(x)y = c(x)yn
Обязательное условие, что функции b(x) и c(x) – являются непрерывными.
Задача №5
Рассмотрим общее решение данного типа на примере. Необходимо выполнить поиск всех возможных решений уравнения:
Во время оценки уравнения в нем можно идентифицировать ДУ Бернулли с параметром ½. Оно легко сводится к линейному ДУ, для этого достаточно заменить выражения:
Находим производную:
Выполним деление по начальному уравнению Бернулли на
и выполним необходимые преобразования:
Произведем замену параметра х на параметр у:
Теперь вычисляем интегрирующий модуль для данной функции, он будет равен:
Теперь производим ряд преобразований для вычисления решения диффуравнения:
Переписываем полученную функцию в неявном виде и получаем ответ:
Дифференциальные уравнения второго порядка
Отличить ДУ 2-го порядка от таковых 1-го порядка достаточно просто – в их составе присутствует вторая производная (y’’) и не содержится производных более высокого уровня.
Общий вид таких уравнений таков:
F(m,n,n’,n») = 0
Линейные однородные ДУ второго порядка с постоянными коэффициентами
Определение линейных дифференциальных однородных уравнений 2-го порядка крайне просто – они имеют вид:
y» + ry’ + k = 0
При это важным условием теории является причисление r и k к действительным числам.
Задача №6
Рассмотрим решение однородных диффуравнений 2-го порядка с постоянными коэффициентами на примере.
Найти решение диффуравнения 2-го порядка вида:
Во всех таких случаях начинаем с поиска характеристического уравнения:
Методы решения данного уравнения достаточно простые, можно воспользоваться калькулятором или быстро решить на листочке, поэтому их приводить не будем, запишем лишь корни – 1, 5.
Поскольку это все действительные, неодинаковые числа, то можно записать функцию-решение в следующем виде:
Линейные неоднородные ДУ второго порядка с постоянными коэффициентами
Общий вид неоднородных диффуравнений второго порядка легко определить по представленному образцу:
y» + ry’ + ky = f(x)
Переменные r и k должны быть вещественными и постоянными числами.
Задача №7
Рассмотрим подробное решение. Необходимо определить все решения для уравнения y» + y = cos x.
На первом этапе находим в составе неоднородного уравнения его однородную часть – это будет y» — y = 0.
Для него уже выполняем поиск характеристического уравнения – оно будет иметь вид k2 + 1 = 0.
Корнями для данного характеристического уравнения являются k1 = -i и k2 = i.
Исходя из этого записываем решение для однородного уравнения:
Из-за отсутствия параметра с производной первого порядка также будет справедливо записать:
Теперь остается только подставить найденные выражения:
Частное и общее решение для уравнения можно записать:
Дифференциальные уравнения высших порядков
Дифференциальные однородные уравнения высших порядков легко отличить, если они совпадают со следующим видом:
Для неоднородных справедлив другой формат:
Для выбора корректного пути решения ДУ, необходимо четко и правильно определить его тип.
Для этого необходимо решить уравнение относительно его производной и проверить, возможно ли разложение функции на множители. После этого достаточно сравнить с одним из типов, приведенным в данной статье.