Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

Многих людей, хоть как-то изучавших курс высшей математики в учебном заведении, приводит в ужас словосочетание «дифференциальные уравнения». 

Согласно строгому научному определению в книгах – так именуются математические выражения, где в состав входят функция, ее производная или параметр. 

Имеется достаточно большое количество типов этих равенств, рассмотрим подходы к их решению так, чтобы они были понятны даже для «чайников».

Дифференциальные уравнения первого порядка

Обыкновенное диффуравнение (ДУ) 1-го порядка задается относительно некой функции, имеющей вид у(х):

F(x,y(x),y´(x)) = 0,

здесь, F(x,y,y’) – это функция, задающаяся для трех аргументов (в этом примере для х, у и у’).Таково строгое математическое определение ДУ.

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

Для примера можно привести следующее уравнение:

xy'(x) — y(x)2 = 0

функция вида F(x,y,p) = xp — y2

Простейшие ДУ первого порядка

Общепринятый механизм нахождения решения таких выражений (чаще всего похожи на y’ = f(x)) – это интегрирование левой и правой части такого уравнения на заданном промежутке Х. 

После интегрирования получим такое выражение:

∫ y’dx = ∫ f(x)dx

Воспользовавшись свойствами, которые относятся к интегральным выражениям, упростим выражение до вида:

y = F(x) + N

здесь, F(x) – это первообразная от функции f(x) на заданном интервале Х, а N – случайным образом выбранная константа.

Задача №1

Необходимо определить все возможные варианты решения диффуравнения, имеющего вид 

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

Последовательно рассмотрим решение.

Представленное диффуравнение может иметь смысл только при действительных значениях параметра х. Примем условие, что x ≠ 0, тогда выражение легко преобразовывается в следующее:

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

Если же, напротив, принять, что х = 0, то выражение приобретет следующий вид, характерный для любых функций y’, удовлетворяющих данному условию:

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

Можно заключить, что решением при справедливости условия х = 0 будет любая функция у, найденная, когда аргумент равен нулю. Остается только проинтегрировать полученное диффуравнение:

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

Данное выражение – это решение для приведенного диффуравнения.

ДУ с разделяющимися переменными

Среди дифуров 1-го порядка можно выделить такие, где все переменные х и у можно преобразовать так, что они окажутся по разные стороны от знака равенства. 

Соответственно уравнения, где путем преобразований это возможно сделать, называются диффуравнениями с разделяющимися переменными. 

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

Их общий вид следующий:

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

После проведения нескольких преобразований, это выражение может быть сведено к следующему виду:

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

При составлении преобразований необходимо внимательно разделять переменные, не допуская, чтобы функции обращались в ноль, иначе возможна потеря некоторых значений.

Задача №2

Рассмотрим обыкновенный пример. Необходимо определить все возможные решения диффуравнения y’ = y(x2 + ex)

Как решать? В первую очередь проводим разделение переменных в разные части уравнения:

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

Данные преобразования справедливы, если у ≠ 0.

Если рассмотреть вариант решения при нулевом показателе функции, то можно заметить ,что

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

Это означает, что y = 0 – одно из возможных решений задачи.

Рассмотрим другие варианты решений, для чего произведем интегрирование диффуравнения:

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

Финальная часть преобразований будет вторым решением диффуравнения. Останется только потенциировать это выражение, чтобы привести его к более явному виду:

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

Правильными решениями, в результате преобразований, будут:

Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

 

Кроме того, можно воспользоваться онлайн системой для нахождения ответа. Подробные объяснения даны в решебниках Филиппова и Понтрягина.

Линейные неоднородные ДУ первого порядка

Линейные неоднородные уравнения – это такие выражения, которые можно записать в формате y’ + b(x)y = f(x), при этом функции b(x) и f(x) – непрерывные.

Основной принцип при нахождении решения сводится к следующим шагам:

  • Первым делом для уравнения необходимо произвести поиск решения, которое бы соответствовало линейному однородному диффуравнению.

  • Затем необходимо варьировать произвольной постоянной, производя ее замену на функцию.

  • На финальном этапе функция подставляется в первоначальное уравнение, откуда, решая ДУ, получается ответ.

  • Задача №3

    Рассмотрим применение методики решения на примере. 

    Необходимо найти решение дифференциального уравнения вида 

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Решение заключается в следующем. Первоначально примем, что y = m∗n, следовательно, получается:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    На следующем этапе нужно определить, что такое m (оно обязательно не должно быть равным нулю), при котором все выражение внутри скобок будет равно нулю. 

    Получаем дополнительное дифференциальное уравнение:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Теперь необходимо принять одно из частных решений n = x2 + 1, которое соответствует равенству С2 — С1=0.

    Выполняем оставшиеся преобразования:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Вполне очевидно, что ответом на условие задачи будет функция:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Задача Коши для ДУ

    При рассмотрении решения практически любого диффуравнения, имеющего вид F(m,n,n’) = 0, становится очевидно, что это бесконечно большое количество решений (это следствие самого возникновения диффуравнения). 

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    На данном этапе математики сталкиваются с вопросом о выборе конкретного решения и способе его выделения из множества.Иными словами, если представить решения в виде бесконечного множества интегральных кривых, то необходимо найти среди них нужную. 

    Чтобы это сделать, необходимо рассмотреть плоскость Xoy, где должна быть задана некая точка D0, имеющая координаты (x0, y0) – именно через них и должна пройти интегральная кривая, чтобы стать искомым ответом.

    Когда мы с самого начала задаем точку D0(x0, y0) – это означает, задание начального условия y(x0) = y0. Диффуравнение, для которого определено начальное условие в представленном формате, называется уравнением с заданной задачей Коши.


    Задача №4

    Рассмотрим примеры с объяснениями. Необходимо определить решения задачи Коши вида:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Ход решения строится в три этапа. На первом этапе решаем диффуравнение y’ = xy2 стандартным методом. Его решение приводить не будем, приведем только ответ:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Производим подстановку начального значения (х = 0, у = 1) в решение и находим значение С:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Производим подстановку полученного значения в ответ диффуравнения и получаем одно из частных решений:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Полученная функция – ответ на задачу Коши в этом примере.

    Дифференциальные уравнения Бернулли

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор


    ДУ Бернулли обычно представлено в следующем виде:

    y’ + b(x)y = c(x)yn

    Обязательное условие, что функции b(x) и c(x) – являются непрерывными.


    Задача №5

    Рассмотрим общее решение данного типа на примере. Необходимо выполнить поиск всех возможных решений уравнения:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Во время оценки уравнения в нем можно идентифицировать ДУ Бернулли с параметром ½. Оно легко сводится к линейному ДУ, для этого достаточно заменить выражения:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Находим производную:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Выполним деление по начальному уравнению Бернулли на 

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    и выполним необходимые преобразования:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Произведем замену параметра х на параметр у:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Теперь вычисляем интегрирующий модуль для данной функции, он будет равен:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Теперь производим ряд преобразований для вычисления решения диффуравнения:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Переписываем полученную функцию в неявном виде и получаем ответ:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Дифференциальные уравнения второго порядка

    Отличить ДУ 2-го порядка от таковых 1-го порядка достаточно просто – в их составе присутствует вторая производная (y’’) и не содержится производных более высокого уровня. 

    Общий вид таких уравнений таков:

    F(m,n,n’,n») = 0  

    Линейные однородные ДУ второго порядка с постоянными коэффициентами

    Определение линейных дифференциальных однородных уравнений 2-го порядка крайне просто – они имеют вид:

    y» + ry’ + k = 0

    При это важным условием теории является причисление r и k к действительным числам.

    Задача №6

    Рассмотрим решение однородных диффуравнений 2-го порядка с постоянными коэффициентами на примере.

    Найти решение диффуравнения 2-го порядка вида:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Во всех таких случаях начинаем с поиска характеристического уравнения:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Методы решения данного уравнения достаточно простые, можно воспользоваться калькулятором или быстро решить на листочке, поэтому их приводить не будем, запишем лишь корни – 1, 5. 

    Поскольку это все действительные, неодинаковые числа, то можно записать функцию-решение в следующем виде:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

     

    Линейные неоднородные ДУ второго порядка с постоянными коэффициентами

    Общий вид неоднородных диффуравнений второго порядка легко определить по представленному образцу:

    y» + ry’ + ky = f(x)

    Переменные r и k должны быть вещественными и постоянными числами.

    Задача №7

    Рассмотрим подробное решение. Необходимо определить все решения для уравнения y» + y = cos x.

    На первом этапе находим в составе неоднородного уравнения его однородную часть – это будет y» — y = 0. 

    Для него уже выполняем поиск характеристического уравнения – оно будет иметь вид k2 + 1 = 0.

    Корнями для данного характеристического уравнения являются k1 = -i и k2 = i. 

    Исходя из этого записываем решение для однородного уравнения:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Из-за отсутствия параметра с производной первого порядка также будет справедливо записать:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Теперь остается только подставить найденные выражения:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Частное и общее решение для уравнения можно записать:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Дифференциальные уравнения высших порядков

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Дифференциальные однородные уравнения высших порядков легко отличить, если они совпадают со следующим видом:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Для неоднородных справедлив другой формат:

    Дифференциальные уравнения определение, типы ДУ, теория, как решать ДУ первого и второго порядка, методы и примеры подробных решений, онлайн-калькулятор

    Для выбора корректного пути решения ДУ, необходимо четко и правильно определить его тип. 

    Для этого необходимо решить уравнение относительно его производной и проверить, возможно ли разложение функции на множители. После этого достаточно сравнить с одним из типов, приведенным в данной статье.

    Беликова Ирина

    Учитель физики, информатики и вычислительной техники. Победитель конкурса лучших учителей Российской Федерации в рамках Приоритетного Национального Проекта "Образование".

    Оцените автора
    Добавить комментарий

    Вставить формулу как
    Блок
    Строка
    Дополнительные настройки
    Цвет формулы
    Цвет текста
    #333333
    Используйте LaTeX для набора формулы
    Предпросмотр
    \({}\)
    Формула не набрана
    Вставить
    Adblock
    detector